Optim Eng (2006) 7: 5-32
DOI 10.1007/s11081-006-6588-z

QPSchur: A dual, active-set, Schur-complement method
for large-scale and structured convex quadratic
programming

Roscoe A. Bartlett - Lorenz T. Biegler

Received: 20 March, 2002 / Revised: 23 March, 2005
© Springer Science + Business Media, Inc. 2006

Abstract We describe an active-set, dual-feasible Schur-complement method for quadratic
programming (QP) with positive definite Hessians. The formulation of the QP being solved
is general and flexible, and is appropriate for many different application areas. Moreover, the
specialized structure of the QP is abstracted away behind a fixed KKT matrix called K, and
other problem matrices, which naturally leads to an object-oriented software implementation.
Updates to the working set of active inequality constraints are facilitated using a dense Schur
complement, which we expect to remain small. Here, the dual Schur complement method
requires the projected Hessian to be positive definite for every working set considered by
the algorithm. Therefore, this method is not appropriate for all QPs. While the Schur com-
plement approach to linear algebra is very flexible with respect to allowing exploitation of
problem structure, it is not as numerically stable as approaches using a QR factorization.
However, we show that the use of fixed-precision iterative refinement helps to dramatically
improve the numerical stability of this Schur complement algorithm. The use of the object-
oriented QP solver implementation is demonstrated on two different application areas with
specializations in each area; large-scale model predictive control (MPC) and reduced-space
successive quadratic programming (with several different representations for the reduced
Hessian). These results demonstrate that the QP solver can exploit application-specific struc-
ture in a computationally efficient and fairly robust manner as compared to other QP solver
implementations.

Keywords Quadratic programming - Schur complement - Active-set - Dual space - Object
oriented programming

R. A. Bartlett
Sandia National Laboratories, Albuquerque, NM 87185, USA
e-mail: rabartl @sandia.gov

L. T. Biegler (<)
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: 1b01 @andrew.cmu.edu

@ Springer

6 Optim Eng (2006) 7: 5-32

1. Introduction

Quadratic Programming (QP) methods are widely used in applications of control, finance and
as akey subproblem in many nonlinear programming solvers. As larger and more challenging
applications are considered, more attention is required for the development of efficient QP
algorithms. In this study we consider the development of a flexible and efficient object-
oriented QP method for large-scale use, and we compare this approach to some state-of-the-
art QP solvers. In particular, our goal is to exploit large-scale problem structure and to handle
the selection of working sets of active constraints efficiently.

Active set solvers for quadratic programming (see Fletcher, 1981, Chapter 10) can be
classified into primal feasible (Gill et al., 1995; Gill, 1990; Betts and Frank, 1994) and dual
feasible solvers (Goldfarb and Idnani, 1983; Schmid and Biegler, 1994; Powell, 1983). In the
primal approach, a Phase I calculation is normally executed to find an initial feasible point,
which is followed by a Phase II calculation where the KKT matrix is updated as constraints
are added or dropped, while the algorithm reduces the objective function and maintains
primal feasibility. The primal algorithm terminates successfully at a dual feasible point and
strict convexity of the QP problem is not required for this approach. Dual feasible solvers,
on the other hand, require a positive-definite projected Hessian but start with a dual feasible
point that is usually computed cheaply (e.g. using the unconstrained minimum that initially
ignores inequality constraints). In the dual approach, a KKT matrix is updated as constraints
are added or dropped while the algorithm increases the objective function and maintains dual
feasibility. The dual algorithm terminates successfully at a primal feasible point (i.e. because
the duality gap is zero between the primal and dual formulations for convex QPs (Nash and
Sofer, 1996)). We also mention that an alternative to active-set solvers is an interior point (or
barrier) approach, such as the LOQO (Vanderbei, 1994) and OOQP! solvers.

Three popular approaches to factorize and update the KKT matrix are range space meth-
ods such as QPKWIK and ZQPCVX (Goldfarb and Idnani, 1983; Schmid and Biegler, 1994;
Powell, 1983), null space methods such as QPOPT, Gill et al. (1995) and Schur complement
methods such as SOCS (Gill, 1990; Betts and Frank, 1994). While the first two approaches
often rely on variants of dense QR factorizations (and therefore possess good numerical
stability properties), the Schur complement method exploits and performs only linear solves
with a fixed initial KKT matrix (K,) and seems to be ideally suited to exploit large, sparse
and structured systems. The particular Schur complement implementation in Betts and Frank
(1994) includes general sparse linear algebra solvers and has addressed very large QP sub-
problems successfully.

In this study, we also develop a Schur complement QP solver which enables us to effec-
tively tailor linear algebra in an application-specific way for various large-scale, structured
QPs. We assume positive-definite Hessians in the QP and therefore we opt for a dual feasi-
ble method, which we call QPSchur. The dual approach also allows great flexibility for the
implementation of the QP constraints so as to exploit problem structure in an application-
specific way. While current dual QP methods that use QR factorizations have good numerical
stability, these dual QR methods can be inflexible with respect to being able to exploit prob-
lem structure. The fact that we adopt a Schur complement approach for linear algebra in
order to be able to exploit application-specific structure comes at the expense of sacrificing
numerical stability to some extent as compared to dense QR methods. However, we show
that the use of fixed-precision iterative refinement can improve the numerical stability of
Schur complement methods. Because QPSchur uses a dual approach, it differs from the

! http://www.cs.wisc.edu/~swright/ooqp

@ Springer

Optim Eng (2006) 7: 5-32 7

primal Schur complement approaches of Gill (1990) and Betts and Frank (1994) and, to our
knowledge, this is the first study that applies Schur complement approaches with a dual fea-
sible algorithm. Therefore, a primary contribution of this work is the adaptation of the Schur
complement approach for use in a dual QP algorithm. These adaptations are not (at least
to us) immediately obvious and came about only after much thought, driven by numerical
experience.

A second contribution of this work is a description of the QPSchur algorithm that lends it-
self naturally to an object-oriented (OO) implementation in C++. We also call this OO C++
implementation QPSchur. The QPSchur algorithm described here, however, is abstract and is
more general than our current C++ QPSchur implementation. Through this approach, adding
and dropping inequality constraints from the working set is done in a flexible manner. The QP-
Schur algorithm allows the structure of the underlying application area to be better exploited
than with other dual QP methods, such as those based on the Goldfard and Idnani approach
(Goldfarb and Idnani, 1983). The QPSchur algorithm allows great freedom in the definition
and implementation for the Hessian matrix (by specializing the implementation of K, in the
Schur complement approach to linear algebra) and for the normals of the inequality constraints
(as allowed by the dual algorithm). These properties make the resulting QP algorithm an ideal
candidate for OO programming concepts which allow the exploitation of the structure for a
number of applications. To demonstrate this ability to exploit application-specific problem
structure, we consider several QP examples drawn from a broad range of applications.

The rest of this paper is organized as follows. The next section states the quadratic pro-
gramming problem and presents the concept of the working set. Section 3 outlines the dual-
feasible active-set algorithm consistent with Goldfarb and Idnani (1983). Section 4 presents
a review of the Schur complement QP method consistent with Gill (1990) and describes the
basic factorization updates and step computations for adding and dropping active constraints.
Section 5 describes the combined Schur complement dual active-set QP algorithm QPSchur
which is the new contribution of this work. This section includes detailed calculations for
the QP steps, treatment of degeneracy, safeguards in the presence of ill-conditioning and
roundoff error and a warm start algorithm based on an initial guess for the working set. Sec-
tion 6 demonstrates the benefits of the QP algorithm and its object-oriented implementation
on applications drawn from process control and successive quadratic programming. Finally,
Section 7 concludes the paper and presents areas for future work.

2. The quadratic programming problem and the working set

The general formulation for the QP to be solved is

min g'x+ hxTGx (1

xeRr

HEM SN
s.t. < x < 2
Cr, AZ cuy

where: x,x;,xy € R", g e R", G =GT e R"™" is positive definite, A. € R**" and
cr, cy € R™. The QPSchur algorithm attempts to solve (1)—(2) for the first-order KKT op-
timality conditions, which include feasibility of the constraints (2) and linear dependence of
the gradients

g+Gx+AAr+pn=0. 3)
@ Springer

8 Optim Eng (2006) 7: 5-32

The solution consists of the unknown primal variables x and the multipliers A for ¢, <
Afx < cy and p for x; < x < xy. When appropriate, to allow a more abstract handling
of the inequality constraints in (2), we define the aggregate matrix A = [/ A.] and its
aggregate multipliers v7 = [u? A7]. We note that at the optimum that the j* element
of v will satisfy the complementarity conditions: v; > 0 for an active upper bound, v; <0
for an active lower bound, and v; = 0O for an inactive constraint. Active-set QP algorithms,
such as QPSchur, search through different working sets of active constraints until the above
optimality conditions are met or the QP is found to be infeasible. In active-set QP algorithms,
equality-constrained QPs of the form

min gTx+%HhxTGx 4)
xeRr
st. Alx =b,)

are solved for each instance of the working set where A, corresponds to the constraint
normals for the working subset of (2) and b,, corresponds to either the upper or lower bounds
in (2) for the working set.

The dual active-set QP algorithm is described in the next section. This dual QP algorithm,
as well as every other active-set QP algorithm, requires the solution of linear systems related
to the KKT system for equality-constrained QPs of the form (4)—(5).

3. Overview of the dual active-set QP algorithm for adjusting the working set

The dual active-set QP algorithm maintains iterates that are dual feasible (i.e. the multipliers
v have the correct sign as described above) but primal infeasible (i.e. one or more of the
inequality constraints in (2) are violated by more than a prescribed tolerance) and one form
of this method, as described in Goldfarb and Idnani (1983), is outlined here. At each major
iteration in the dual algorithm, a violated inequality constraint from (2) with index ;) and
the violated bound b is selected to add to the current working set of active inequality
constraints. From now on we will refer to this violated constraint simply by its index j
(i.e. violated constraint j). The next phase in a dual-algorithm iteration considers the
addition of the violated constraint j*) to the working set by computing steps s* and s"
for the current estimates for the primal x and dual v variables, respectively, that define the
updates

()" = x + s, (6)
Wt = v+ Brs". (7)

The value of the step t = ¢” in (6)—(7), known as the primal step length, corresponds to the

the solution of the KKT system with the addition of the constraint j* to the working set.

The sign

= +1 if (A¢j+)"x > bje : violated upper bound @)
T | -1 if (A4 x < bjw : violated lower bound

in (6)—(7) can be inferred a priori since the objective function must increase when adding
the violated constraint j*). The multiplier value y* = B¢” for the new constraint j* is

@ Springer

Optim Eng (2006) 7: 5-32 9

computed as well. Before the new constraint j () can be added to the active-set, the dual
step length ¢ = P must be computed. The dual step length ¢” is the maximum value of
t = tP such than (v)* remains dual feasible for the update formula (7). If t? < ¢”, then the
multiplier that becomes v = 0 determines the constraint j that will be removed from
the working set. If the new constraint j* is linearly dependent with those in the current
working set, then the solution to the KKT system for the augmented working set is undefined.
However, in this case, the steps s* and s are still defined and the step s is used to select
another constraint, with index j, from the current working set to drop. In essence this
replaces the dropped constraint j with the new constraint j.
This basic logic of the dual algorithm is described below in Algorithm 3.1.

Algorithm 3.1. Dual Active-Set QP Algorithm

e Initialization Find an initial working set of active constraints that gives a nonsingular
KKT system and a dual feasible point (i.e. with (3) satisfied and the correct signs for the
multipliers).

¢ Dual Iterations
foriter=1... max_iter

1. PICK_VIOLATED_CONSTRAINT

(a) Pick an inequality constraint from (2) with index j that is violated by more
than some tolerance.

(b) Check for convergence. If no violated constraints are found, STOP, the current
point is optimal.

2. COMPUTE_SEARCH_DIRECTION

(a) Compute search directions for the primal and dual variables s* and s", respec-
tively.

3. COMPUTE_STEP_LENGTHS

(a) Compute the primal step length t¥ (note, t¥ = oo if constraint j is linearly
dependent with the current working set).

(b) Compute the dual step length tP (i.e. maximum step for dual feasibility) and
the limiting multiplier index j= for the update rule (7) that keeps the updated
multipliers vt for the current working set from changing sign.

4. TAKE_STEP

(a) Ift? = ooandtP = oo, then label the QP as infeasible, as the added constraint
j) is inconsistent. Terminate algorithm!

(b) Elseift? < t, take a Dual step (i.e. t* = oo) or Partial Primal-Dual step (i.e. t*
is finite). For the dual step, j) is linearly dependent and we require a drop/add
operation where the constraint j is replaced with the incoming constraint j.
For the partial primal-dual step, j is linearly independent and we drop the
constraint jO. Update factorizations for this add/drop.

Goto Step {2}

(c) Elseif t* < tP, take a Full Primal-Dual step using (6)—(7) and add constraint
j) to the working set. Update factorizations for adding j™ to the working set
if not done already.

endfor
@ Springer

10 Optim Eng (2006) 7: 5-32

Key theory for the behavior and convergence of the algorithm can be found in Goldfarb
and Idnani (1983) and Bartlett (2001). In particular,

e For every iteration where a linearly independent violated constraint is selected to add to
the working set, a nonzero step for the primal variables s* 7 0 will be computed and will
result in an increase in the strictly convex objective function.

e For iterations where a linearly dependent constraint is added to the working set, the step
for the primal variables s* will be zero but the step for the dual variables s* will not be
Zero.
If the constraints are consistent, then when a linearly dependent constraint is added, a
constraint will be selected to be dropped from the working set. This means that t” < co
will be computed in Step {3} and therefore Step {4} will never be executed unless the
constraints are infeasible. In addition, after this dropped constraint j(7 is replaced by the
newly added constraint j*, the new KKT system after the drop/add will be nonsingular
and the dropped constraint j= will become strictly feasible.

It is easy to show that, in exact arithmetic, the strictly convex objective function always
increases for every major iteration (see Bartlett (2001)) and therefore the same working set
will never be visited twice. Since there are only a finite number of permutations of active
constraints in the working set possible, the algorithm must terminate in a finite number of
iterations. With ill-conditioning and roundoff errors, however, a floating-point implementa-
tion of the algorithm may cycle. Safeguards against this are discussed in the context of the
QPSchur algorithm in Section 5.3.

The linear algebra used to compute the steps s* and s” can be implemented in a variety of
ways. QR factorizations described in Goldfarb and Idnani (1983) possess superior numerical
stability properties but are often inflexible with regard to exploiting application-specific
structure. Therefore we consider a Schur complement approach for handling the linear algebra
in a flexible way. The basics of the Schur complement approach for the linear algebra are
outlined in the next section and then the combined Schur complement dual QP algorithm
QPSchur is presented in Section 5.

4. Overview of linear algebra for the Schur complement active-set
QP method

As stated earlier, one particularly flexible approach for performing the linear algebra needed
to solve (4)—(5) associated with the current working set is the Schur complement method.
Here we provide an overview of the Schur complement method consistent with Gill (1990).
The purpose of the following overview is to establish nomenclature and to set the context for
describing the computations in the QPSchur algorithm discussed in Section 5.

To lay the groundwork for the Schur complement QP method, we first consider an initial
KKT system involving only active variable bounds (i.e. fixed? variables) which defines a
matrix K,. We then describe in Section 4.2 how the Schur complement method uses this
initial KKT system and K, to solve KKT systems for changes to the working set using a
Schur complement matrix S. We then present in Section 4.3 how the Schur complement

2 Here we use the term “fixed” to describe variables for which either their upper or lower bounds are part of
the current working set. This is consistent with the terminology used in Gill (1990).

@ Springer

Optim Eng (2006) 7: 5-32 11

S is updated and downdated for individual changes to the working set. Finally, details on
implementation options for the factorization Schur complement S and on updating the factors
of § for single changes to the Schur complement are described in Section 4.4.

4.1. Initial KKT system

The Schur complement method starts with a working set of initially free (x¥) and fixed
(xX) variables. Here, x is partitioned using the permutation matrix Q = [QR Q¥], with
QR c Rnxnk and QX c Rnxn)" as

(Y (07 x xR

0'x = x= = ©)
(o (07x xX

and bX € R"" defines the initial active variable bounds, where b¥ = [(Q")Tx.] or

[(OX)Txy);, for I =1...n%. Given the permutations in (9), initial KKT system for the
QP is given by

GRR GRX XR _gR
(GRX)T GXX I XX — _gX (10)
1 wX bX

where G** = (Q*)" G(Q%), G = (") G(Q¥), G* = (") G(Q%), ¢ =(0")¢,
g¥ = (0" gand uX = (QX)T iu. The dual QP method requires that this initial working set
result in multipilers u* that are dual feasible.

This system can be solved in three blocks by first setting xX = b*, then solving the linear
system

GRR.XR — _gR _ GRXbX (11)

followed by setting u* = —g% — (GF)TxR — (G*¥*)bX. We denote the initial KKT system
in (11) as K,y, = f, (where K, = G®R, y, = x® and f, = —g® — G®*bX) which defines
the initial solution vector

Yo=K, fo (12)

The efficiency of the Schur complement method depends on the utilization of the initial
solution y, computed in (12) which requires that the definition of f, not change during the
course of the algorithm.

For the dual QP method to succeed, G must be symmetric positive definite (s.p.d.) when
projected into any of the working sets examined by a QP algorithm. As result, we require
that G be s.p.d. (which occurs in our applications).

With the introduction of the initial KKT system, we now consider the details of modifying
the working set with the Schur complement method. In the next section, the computation of
the Schur complement is presented in response to a set of changes (for adding or dropping
constraints) to the working set. We then present the updating strategy for changes that involve
the addition and subtraction of single constraints in Section 4.3.

@ Springer

12 Optim Eng (2006) 7: 5-32

4.2. Representing the KKT system with changes to the initial working-set

For a set of changes from the initial working set (9), the augmented KKT system takes the
form

EMERH

Here the matrices U, V and vectors z, d arise from changes in the working set due to addition
of constraints or freeing initially fixed variables. The structure of these matrices and vectors
is detailed below. System (13) can be solved by applying block Gaussian elimination by
pivoting on the nonsingular block K, (which is guaranteed to be s.p.d. if G is s.p.d.). This
leads to the formation of the Schur complement matrix

S=v-U"K;'U. (14)

Given the above Schur complement S, the system (13) can then be solved as

z=8"'d-U"y,) (15)
followed by
y=K'(f, - U2), (16)

where y, is defined in (12). The Schur complement matrix S in (14) is guaranteed to be
nonsingular if K, and the full KKT matrix in (13) are nonsingular (Carlson, 1986).

The primary advantage of the Schur complement approach is that it allows great flexibility
in the representation and implementation of the initial KKT matrix K, since the method
only performs linear solves with K,. Since only linear solves with K, are required the
implementation of this matrix operator is completely arbitrary and can be adapted to exploit
the specific structure and properties of a particular class of QPs.

We now consider several different types of changes to the initial working set that represent
(13). First we define the integer ¢* as the number of variables initially fixed and currently not
at their initial bound, the integer ¢ as the number of variables initially fixed and still remain
fixed at their original bounds, and the integer ¢‘* as the number of initially free constraints
from (2) added to the working set. The last type of change to the working set is specialized
to double-sided variable bounds. It is defined by the integer g€ as the number of variables
initially fixed, then freed, then fixed to their opposite bounds. Note that in order for a variable
that is initially fixed to one of its bounds to be later fixed to its other bound, the variable must
first be freed from its initial bound. Therefore, the number of changes ¢ satisfies g€ < ¢7.
This set of changes to the working set is discussed in more detail below. For the rest of this
discussion we will use the integers g7, g, ¢ and ¢€ to indicate these four different types
of changes to the working set.

The dimension of the Schur complement S in (14) will be shown to be S € R?*? where
g =q" +q"? 4+ g°. We now define a set of mapping matrices that can be used to define
sets of variables and active constraints in the working set. First, define the mapping matrices
oFf ¢]R”XX"F, 0P e R" 4" and o€ € R?" %4 that partition the initially fixed variables x*
into subsets where x© = (QF)Tx¥ are initially fixed variables that are currently not fixed at

@ Springer

Optim Eng (2006) 7: 5-32 13

their initial bound, x? = (Q”)"xX are initially fixed variables that are currently still fixed
at their initial bounds, and x¢ = (Q€)7x¥ are initially fixed variables that where freed and
are currently fixed at the opposite bound. From the above definitions, the current status in
the working set for initially fixed variables must satisfy n¥ = g + ¢? and ¢€ < ¢© < n¥*.

The last permutation matrix that we define is Q" € R™*4" which specifies A =
A Q™ which are the constraint normals in (2) in the current working set that are not associated
with initially fixed variables. Note that since the total number of constraints in the working set
must not exceed the total number of variables, then it is required that n¥ — g% + ¢ + ¢ <
n.

At this point we also define other quantities that are needed to specify the augmented KKT
system for the current working set. We define the vector b to signify the relevant upper or lower
bound in (2), such that 5 = (QP)7 b selects the active bounds and b is used to represent
the opposite set of initial active bounds bX. For example, if b¥ = (xf); then (bf)y = (xl’f Vi
(and vice versa). Given bX and bX, we have bS = (Q)T(QM)TbY, b = ()T (QC)TbX
and bP = (QP)ThX. We also define v to be the subset of v that contains multipliers
for the constraints from (x;)® < x® < (xy)® and ¢, < ATx < ¢y in the working set. The
multipliers for initially fixed variables that are currently still in the working set are contained
in u¢ = (QH"(Q")" u* and u” = Q") u*.

Now that a set of changes from the initial working set has been defined, the derivation of
(13) is started by writing the KKT system for the current working set as

r GRR GRF GRD A(+)R ar XR] r _gR -
(GRF)T GFF GFD A(+)F QC XF _gF
(GRD)T (GFD)T GDD A(+)D I)CD _gD
= . 1
(A(+)R)T (A(+)F)T (A(+)D)T p b a7
()" uC bC
L 1 dLw? 1 Lo”]

At some point during the QP algorithm, some of the initially fixed variables x* may need to
be freed from their initial bounds. To do this, the algorithm computes the change p* from
the initial bound and sets x* = p* + b*. Only elements p;* are computed for those x;* that
do not remain at the initial bound. All other elements in p* are implicitly zero. Permuting
(17) and substituting x© = p” + b¥ (where p = (QF)T pX and bF = (QF)Tb¥) leads to
the system represented as

MR

where

U = [GRF AR (), (19
GFF A(+)F QC

V= | @ADHT 0 0 |, (20)

Q9" 0 0
@ Springer

14 Optim Eng (2006) 7: 5-32

__gF _ (QF)TGXXbX
d = b — (A(+)X)TbX , 1)
bC — b€
— pF
7= p® , (22)
u€

and GRXbX — GRFbF + GRDbD, (QF)TGXXbX — GFFbF + GFDbD and (A(+)X)TbX —
(ADITHF 1 (ADPYTHD Following the solution of the permuted augmented KKT sys-
tem in (18) the multipliers 1P are computed from (17) as:

MD — _gD _ (GRD TxR _ (GFD)T(pF + bF) _ GDDbD _ A(+)DV(+)' (23)

For the augmented KKT systems, we distinguish the arbitrary ordering of changes to the
working set in (13) and the partitioned changes to the working set in (18) using the tilde
‘. These two KKT systems are equivalent, as one is a permutation of the other. To allow for
the changes to the working set to occur in any arbitrary order as shown in (13), we define a
permutation matrix P e R7%4 which gives U = UP,v=P'VP,d=P'dandz = P7z.
The quantities U, V, d and z can be expressed in terms of the original problem matrices and
vectors (see Bartlett (2001)). This permutation matrix is used to define individual changes to
the working set in the next section.

4.3. Single changes to the working set and updating the Schur complement

We now describe the individual changes needed for the augmented KKT system and the
Schur complement whenever a constraint is added or dropped from the working set. These
changes to the working set require the dimension of the augmented KKT system and the
Schur complement S — S to increase (§ = g + 1) or to decrease (§ = ¢ — 1). From now
on the bar ‘=’ will be used to denote the quantities for a single change to the working
set. In the following discussion we first describe changes to the working set that expand
the Schur complement § — S in Section 4.3.1 and then changes that contract S — S in
Section 4.3.2.

4.3.1. Changes that expand the Schur complement
Consider a change to the working set of active constraints where the dimension of the

augmented KKT system (and therefore the Schur complement) increases (i.e. § = g + 1).
The new augmented KKT system is given as

MR

_ _ vV P _ d z
where U = [U uP], V = , d= , = .
Lo | 2=} =[]

@ Springer

<

Optim Eng (2006) 7: 5-32 15

The new augmented Schur complement is given as

o _ S i
S=v-U"k]'U= (25)
]
where f = v? —UTr,& =0 — (uP)'r,and r = K 'u”.

The corresponding values of the vectors u” and v” and the scalars o, d” and z” in (24)
and (25) are given below. Changes to the working set that expand the Schur complement in-
clude g© = ¢" + 1 for an initially fixed variable x} = b;* now being freed, ' = ¢ + 1
for adding a constraint (A ;)"x = b; to the working set, and g€ = ¢ + 1 for an ini-
tially fixed variable xlx = bIX that was freed and is now being fixed to the opposite bound
)C]X = (bf)]

Here we use the colon notation A ;) and A ;) to signify the ith row and the jth column,
respectively, of a matrix A. The quantities u”, v”, o, d” and z” can be derived by inspecting
(19)—(22) for the unpermuted system (18) and then applying the permutation matrix P. In
the partitioned system, #i” can be determined by inspection of (19) for each of the changes
to the working set

G&) ifor gt =qF +1
i’ =1 Al tfor g™ = g™ 41 (26)

0 :forg¢ =q°+1

and the permuted quantity is u” = ii”.
By inspecting (20) it is clear that

ON'GE,
(QNT(AE)T | iforgh =q" +1
0
N ALY,
o = 0 cfor g =g +1 27
0

€k
0 :for g€ =¢q€ +1
0

Gy, forgh =q" +1
§={ 0 :forg® =g +1 (28)

0 :forg¢ =¢q¢+1
@Springer

16 Optim Eng (2006) 7: 5-32

The quantities v” and o are determined as

B PT Vv wr[P PTVP PTpr vV oo
V= = 3 = (29)
1| a»T & 1 @HTP & W o

From (27) note that v = ¢; € R for §¢ = g€ + 1, where k is the index of the row and
column in § where the variable xlX was earlier freed from its initial bound, and ¢; is the
unit vector. For this change, our approach and the one in Gill (1990) preserves the initial
right-hand side f, and therefore the initial KKT solution y, = K Lf, in (12). Changing the
definition of f, to set an initially fixed variable to its other bound would require a solve with
K, in the recomputation of y, = K ;! f,. However, by augmenting the KKT system by using
(20) instead, we avoid this additional solve with K, in augmenting S — §, since u” = 0 for
this case (i.e. r = K 'uP is skipped in (25)). Therefore, this approach of augmenting the
KKT system for 3¢ = g€ + 1 requires fewer solves with K,,, but at the cost of a larger Schur
complement.
Finally, d” and z” can be determined from (21) and (22) as

—g¥ — (GX) pX forg" = ¢ +1
P =1 by — (AY;) ¥ forgh =g +1 (30)
Xy —b¥ for g€ =qC +1
pi¥ forgh =¢F +1
P = v; for q(+) — q(+) +1 (31)
wi forg¢ =q¢ +1

As shown in (25), the major computational work in computing new terms in the augmented
Schur complement involves one solve with K, and a matrix-vector product U7 r. Also, the
work required to update or recompute the factorization of S — § may be significant if ¢
is large (especially if S is indefinite and therefore, in general, requires a complete O(g?)
refactorization).

4.3.2. Changes that shrink the Schur complement

Changes to the working set that shrink the Schur complement include G* = ¢g© — 1 (for
an initially fixed variable that was freed and is now being fixed back to is original bound),
G = g€ — 1 (for an initially fixed variable that was fixed to its opposite bound and is now
being freed), and § = g™ — 1 (for removing an extra constraint that was earlier added
to working set). These changes to the working set involve undoing a previous change where
the KKT system was augmented and therefore the dimension of the Schur complement is
decreased § = g — 1 to remove this earlier change. This is accomplished by removing the
row and column k corresponding to the previous change which is being erased. This change
S — § is illustrated as

|:S(1:k—1,1:k—1) S(l:k—l,k+1:q):| 32

S
Str1:g.1:k-1) Stha1:g.k+1:q)
@ Springer

Optim Eng (2006) 7: 5-32 17

The only computational work involved here is the work required to update the factorization
of S which is discussed next.

4.4. Factoring the Schur complement and updating its factorization

It can be shown that if the projected Hessian for the KKT system for the current working
setin (13) is s.p.d. then the inertia of the Schur complement S is In(S) = (g™ + ¢€, 0, ¢7),
which gives the number of negative, zero and positive eigenvalues in S, respectively (Gill,
1990). The implications of this are that if no initially fixed variables are freed (i.e. g = 0),
then —S is s.p.d.; otherwise S may be indefinite.

Our implementation of S uses either a s.p.d. Cholesky factorization for —S or a symmetric
indefinite Bunch-Kaufman factorization (Golub, 1996) for S. When we know that —S should
be s.p.d. (i.e. when ¢ = 0) then we use the Cholesky factorization. The Cholesky factoriza-
tion is easily and stably updated when symmetric rows and columns are added or removed at
a cost of O(g?) flops per update. On the other hand, when we know that S should be indefinite
(i.e. when g™ 4 ¢€ > 0 and ¢ > 0) we use a dense Bunch-Kaufman factorization. In the
current implementation, we recompute the Bunch-Kaufman factorization from scratch for
every change in S, which results in O(g?) flops. For larger ¢, this means that the updating
an indefinite S is O(g>) and is much more expensive than for a negative definite S which
is O(¢?). In Section 7 we discuss as future work the potential for reducing the cost for an
indefinite S by updating the factors of the symmetric indefinite factorization.

5. Schur complement dual active-set QP algorithm QPSchur

In this section we describe an integration of the dual algorithm for adjusting the working set
outlined in Section 3 and the Schur complement method for handling linear algebra outlined
in Section 4 to produce a flexible and effective algorithm for solving strictly convex QPs
which we call QPSchur. All previously known uses of the Schur complement method for
linear algebra have been used in a primal active-set QP algorithm (Gill, 1990; Betts and
Frank, 1994). The behavior of a dual active-set QP algorithm, such as used for QPSchur, is
significantly different from a primal QP algorithm and these differences impact the linear
algebra computations. The primary linear algebra computations that we describe here are the
computation of the steps for the primal and dual variables s* and s* shown in (6) and (7),
respectively, and the update of the Schur complement. The computation of the steps and the
close relationship to updating the Schur complement is described in the next section. This is
followed in Section 5.2 with a description of a warm-start algorithm where an initial guess
of the optimal working set is used to find an initial dual-feasible point. Lastly, Section 5.3
briefly discusses numerical accuracy issues and iterative refinement.

5.1. Computation of steps for primal and dual variables

The QPSchur algorithm does not directly deal with vectors for the variables x and v’ =
[uT AT] but instead components for these vectors are buried in several different vectors
computed in the Schur complement method. For example, the current estimate of the primal
solution x can be constructed from various components from z (15), y (16) and in bX (9).
The current estimate of the multipliers p is buried in z and P (23). Finally, the current
estimate of the multipliers A is buried in z. Reconstructing x, ¢ and A from z, y, wP and b¥

@ Springer

18 Optim Eng (2006) 7: 5-32

is primarily a book-keeping operation. Closed-form expressions for x and v in terms of
the various permutation and mapping matrices defined above are given in Bartlett (2001).
From here on we will deal with quantities from the perspective of the Schur complement
unknowns but the connection to the original primal and dual variables x and v should be
understood.

To compute the steps for the primal and dual variables s* and s” shown in Algorithm 3.1
Step {2}, we note that the Schur complement method computes the native vectors z, y and
P which determine x and v. As shown in Section 5.1.1, steps s” and s° are computed by
the Schur complement method that define the update rules

vt =y+Brs’, (33)
T =z+ Bts®, (34)

where ¢ is the step determined by Algorithm 3.1 and 8 is defined in (8). Once the algorithm
has computed s? and s”, then s¥ = 57 from (11)~(12) and s”", s€, and s are obtained by
picking out the appropriate entries from s°. Also, from (23), the expression for (u?)* is
given by

WPy = =g = (G T = (G (P +b") = GPPbP — ATV (35)

To compute s, we substitute (x®)* = x& 4 Bts&, (pf)*r = pf + pts¥ and (V)* =
V) 4 Brs¥ 4 Bre e into (35) and obtain s = —(GFP) sk — (GP)TsF — AP (57" 4
ej).

5.1.1. Computation of s* and s*

There are two primary approaches for computing steps s” and s* and determining the method
that results in the least numerical computation depends on the nature of the incoming con-
straint j) and the current state of the working set. In all but one case it will become obvious
which approach requires the least computational expense.

The first approach for computing the steps s¥ and s° is to update the Schur complement
by (24) and (25), followed by the computation of the solutions z* and y* using

P =81d-0"y,) (36)
yi =K' (f, -0@Y 37)

and then setting

5= (D) — /B (38)
s = () = »/TB). (39)

where y T is either the last component of 7 or ji”. Note that this first approach of attempting
to first update the Schur complement for the addition of the constraint ;) may not succeed
since the augmented KKT system may be singular if the constraint j*) is linearly dependent
with the current working set. Therefore, a second approach to compute s” and s° is required
when the augmented KKT system is singular.

@ Springer

Optim Eng (2006) 7: 5-32 19

This second approach uses the nonsingular Schur complement S for the current working
set. In this approach we start by defining the augmented KKT system

K, U u® y* fo
ur Voo T l=|d (40)
(ua)T (va)T y+ de

where using (26), (29) and (30) we obtain

oy =uP, v =v”, and d* = d?, for (FP = ¢ + 1),
o 4 =0,v* =vP,and d* = d?, for (qc = qc + 1), and
e u® =0,v" = eun, and d* = 0, for (77 = g© — 1).

Note that for the case §© = g© — 1, where an initially fixed variable that was freed is now
being fixed back to its original bound, the above KKT system is augmented in (40) instead of
shrunk when updating the Schur complement in (32). As described in Section 4.3.2, shrinking
the Schur complement first may make it singular if S is indefinite. For this case, the constraint
esz = 0 can be added to the working set where k € [1, g] is the row and column in S where
the variable x;* was earlier freed from its initial bound. This constraint gives e} z = pX =0
and therefore the algorithm fixes x* = p* + b = b,

Next, we substitute (33), (34) and y* = 0 + Bt into (40) and add the shown zero vector
to obtain

K, U u'|[y+Bts”] b2 0
uT \% v z+Btst | —| d |+ 0 =0
@Ht @’ 0+ Bt | de h—h
=
K, Uu u ||y [fo
ur Voo z |- d
@HT @)’ 0 | A
K, U u® sY 0
+| UT Voo || st | Bt — 0 =0 (41)
@H" @y’ 1 d“—h

where h = (u®)Ty + (v)" z. In (41), the bracketed quantity is zero because y and z are the
solution to (13). The remaining terms can be used to compute s and s* directly using

|:K0 U:||:Sy:| |:_ua:|
= (42)
ur v st —v?

@ Springer

20 Optim Eng (2006) 7: 5-32

and the last equation can be used to compute the value of the primal step lengtht” = y+/8 =
t for the full primal step as

d* — @)y —)z

P =yt/p=1t= B o £ (0 5) (43)
Given the Schur complement S for the current working set, (42) can be solved as

st =S (=" +UTK, u), (44)
sY = K\ (—u" — Us®). (45)

Here we see that computing s” and s° using (44) and (45) works even if the updated KKT
system (40) becomes singular.

To summarize, the two approaches for computing s” and s° are given in Algorithms 5.1
and 5.2 below.

Algorithm 5.1. Compute s* and s* by attempting to update the complement S — S first.

1. Attempt to update the Schur complement using (25)—(29) which requires a solve with K,
forr = K(j'up ifu? # 0 except for g¥ = q* — 1 which involves shrinking S as shown in
(32).

(@) If § is singular (i.e. because constraint j is linearly dependent with the current
working set) then stop this approach and compute s* and s” using Algorithm 5.2.
(b) Else S is nonsingular and continue to Step 2.

2. Solve for 7+ using (36) which requires a solve with §.
3. Solve for y* using (37) which requires a mandatory solve with K,,.
4. Compute s* using (38) and s using (39).

Algorithm 5.2. Compute s> and s* without updating the Schur complement S.

1. Compute s* from (44) which requires a solve with K, if u® # 0 and a solve with S.
2. Compute s* from (45) which requires a mandatory solve with K,,.

Table 1 shows the counts for the three dominant types of significant computations in an
iteration of the dual algorithm for the three types of steps taken in Step {4} of Algorithm
3.1. If Algorithm 5.1 is used and if a constraint is dropped in a Partial Primal-Dual step then
two separate updates of the factorization of the Schur complement will be performed. If S is
indefinite, then this may result in two separate O(g?) factorizations.

When choosing between Algorithms 5.1 and 5.2 we consider the three types of constraint
updates:

e For g =¢ +1and g =¢¥ —1,u® =0 and s* = —S~!v° in (44), so we can skip a
solve with K, and a matrix-vector multiplication with U. Therefore, Algorithm 5.2 will
always be cheaper than using Algorithm 5.1. In addition, if the added constraint is lin-
early independent, then the update of the Schur complement in step {4} of Algorithm
3.1 will not require any further solves with K, and therefore the total cost of the dual
iteration will be essentially the same for Algorithm 5.1 and Algorithm 5.2 (see Table 1).
Hence, Algorithm 5.2 is always the better alternative for these cases since it also avoids

@ Springer

Optim Eng (2006) 7: 5-32 21

Table 1 Counts for the dominant types of computational operations (i.e. number of factor-
ization updates of S, number of solves with K,, and number of solves with §) for the three
types of additions to the working set (i.e. §¥ = ¢¥ — 1,3¢ = ¢€ + 1, and g = ¢ + 1)
for three different types of iterations of the dual algorithm (i.e. (a) Full Primal-Dual Step, (b)
Partial Primal-Dual Step, and (c) Dual Step)

Fact. updates of S # Solves with K, # Solves with §

Type of change Algo 5.1 Algo5.2 Algo5.1 Algo5.2 Algo5.1 Algo5.2

(a) Dual QP iteration ending in Full Primal-Dual Step (add j)

g =q" -1 1 1 1 1 1 1
G“=4q¢“+1 1 1 1 1 1 1
g =P +1 1 1 2 3 1 1
(b) Dual QP iteration ending in Partial Primal-Dual Step (drop j, add j))

g =q" -1 2 1 1 1 1 1
G“=q¢“+1 2 1 1 1 1 1
P =¢gP+1 2 1 2 3 1 1
(c) Dual QP iteration ending in Dual Step (drop j©), add j)

gF=q" -1 2% 1 1 1 1 1
G =4¢“+1 2% 1 1 1 1 1
GgP =gH 41 2¢ 1 4 3 1 1

*Note, the first Schur complement update (which includes a solve with K, for g = g™ 4 1)
attempted in Algo 5.1 for the Dual Step iteration fails since j* is linearly dependent with the
current working set.

a possible initial failure in the update of the factors of S that can occur when using
Algorithm 5.1.

For ¢ = g™ + 1 we see from Table 1 that Algorithm 5.1 requires fewer solves if the
added constraint j is linearly independent. Otherwise, if the added constraint is linearly
dependent then Algorithm 5.2 will always be cheaper than Algorithm 5.1, since the work
required to attempt the Schur complement update (S — S in Algorithm 5.1) will be wasted
and Algorithm 5.2 will be called anyway. This occurs, for example, when all of the degrees
of freedom are used up (i.e. n*¥ — g7 + ¢ + ¢ = n) and the constraint j* must be
linearly dependent. Here, QPSchur always chooses Algorithm 5.2. On the other hand, if
we assume there are not too many linearly dependent constraints, then encountering a
singular KKT system should be rare, and the direct update of the Schur complement (Step
{2} in Algorithm 3.1) will succeed most of the time. Therefore, by default, QPSchur uses
Algorithm 5.1 to compute s* and s* for the case § = g™ + 1 when the degrees of
freedom are not used up.

5.2. Initialization of the Schur complement and the warm start algorithm

In many cases, a good guess of the optimal working set is known before invoking the
QP solver (e.g. in an rSQP method when near the optimal solution) and by more effec-
tively exploiting this initial guess the overall cost of solving the QP can be greatly reduced.
Here we start with a set of fixed and free variables that is used to shrink K, and we also
initialize the Schur complement in (14). The difficulty with the warm start for this QP

@ Springer

22 Optim Eng (2006) 7: 5-32

algorithm is that an initial guess of the optimal working set may not be dual feasible. Con-
sequently, a simplified (i.e. with respect to the actual implementation) warm start algorithm
that adjusts the initial guess of the working set is given in Algorithm 5.3; interfaces and
procedures for initializing the Schur complement and dropping constraints are discussed in
Bartlett (2001).

Algorithm 5.3. Dual warm start algorithm for adjusting the initial guess of the working set.

1. Initialize S =V —UTK o YU, factor S and remove any constraints that cause S to be
singular.
2. Drop constraints from xf <xF < x5 and cp < ATx < cy until multipliers in z are
dual feasible. while (g > 0)
2=S8d—-UTy,).
Select multiplier v; from z with maximum dual infeasibility.
if (|vj| < dual_infeas_tol) then exit loop, the multipliers in z are dual feasible!
Drop constraint j by shrinking U, V, d and S.
endwhile
v =K, '(f, — U2).
3. Drop constraints from x* = b* until multipliers in uP are dual feasible.
while (g¥ < nX)
(z,y) > x&
/“LD — —(QD)T(gX + (GRX)T)CR + GXXbX).
Select multiplier v ; from wP with maximum dual infeasibility.
if (|| < dual_infeas_tol) then exit loop, current wP is dual feasible!
Drop constraint j by augmenting U, V, d and S.
72=8"1d-UTy,).
y = K;l(fa - Uz).
endwhile

We chose the above warm-start algorithm since it makes sense to drop the constraints in §
first since updating the multipliers for these constraints only requires a solve with S and not
K, to compute z. On the other hand, updating the multipliers u” (for the variables that were
initially fixed and left out of K, in (10)) requires solves with S and K, and is much more
expensive. Therefore, the algorithm only frees as many of these variables as needed (which
requires that the Schur complement be augmented each time).

The key to a highly efficient implementation of the warm start algorithm above is in the
formation and factorizaton of the initial Schur complement S =V — UTK;'U in Algo-
rithm 5.3 Step {5.3}. The details on computing S, = UT K o U are up to the matrix object
that implements K,. When a symmetric direct factorization is used for K, = LODOLOT, then
the above warm start algorithm will only require one backsolve with L, per general ac-
tive constraint instead of four backsolves for a cold start. In addition, level-3 BLAS can
be used for the block backsolve L;lU instead of just level-2 BLAS when S is updated
one column at a time. Therefore, one would expect a warm start to be more than four
times faster than a cold start when there are many active inequalities and the working set
does not change much from the initial guess. Results showing this behavior are given in
Section 6.1. Additional details of this the QP algorithm and refinements can be found in
Bartlett (2001).

@ Springer

Optim Eng (2006) 7: 5-32 23

5.3. Dealing with degeneracy, ill-conditioning and roundoff errors

Here, we briefly mention some numerical implementation details described more fully in
Bartlett (2001). Roundoff errors in floating point computations, which are magnified by
ill-conditioning in the underlying QP, can cause problems in many different areas of the
algorithm and therefore require special attention. Even if the KKT system for the current
working set is well conditioned, ill-conditioning of K, will compromise the accuracy of the
computed solutions. This is because K, is used to update S and roundoff errors are carried
over into the formation of the Schur complement even before S is factored.

Our primary strategy for combating this inaccuracy is to use fixed-precision itera-
tive refinement given K, and the factorized S. While this is not expected to improve
the accuracy of the computed solution when Gaussian elimination with full row or col-
umn pivoting is used (see Section 3.5.3 in Golub, 1996), it may be effective for the
Schur complement method. The reason for this is that roundoff in the Schur comple-
ment method can be much more significant than in Gaussian elimination with unrestricted
complete or partial pivoting, as pivoting in a Schur complement method is only allowed
separately within K, and S and not between these matrices. For most reasonably con-
ditioned nondegenerate QPs, iterative refinement is not needed to identify the optimal
working set. But, it can be used at the solution to help improve the solution accuracy
without impacting runtime too much. Moreover, iterative refinement can be especially
useful for:

correcting a constraint in the current working set that may be violated by more than the
allowed tolerance,

correcting very small multipliers with an incorrect sign. Here, if the dual feasibility violation
is larger than a tolerance, then iterative refinement is applied.

correcting for the wrong sign of ¥ due to roundoff errors in the denominator of (43). This
can occur when a linearly dependent constraint j is being added to the working set and
ly*| ~ oo.

Also, if there is degeneracy in the working set, or after the algorithm is terminated, it
is desirable to recompute the solution using equations like (15)-(16) and (23) to eliminate
accumulated roundoff errors. Applying iterative refinement works very well in practice and
is cheap enough to be the default mode for QPSchur. Finally, numerous additional floating-
point issues that are critical to the success of the implementation have also been incorporated
within QPSchur and are described in Bartlett (2001).

6. Numerical results

This section illustrates the performance of QPSchur on a variety of test problems drawn
from Model Predictive Control (MPC) and from reduced-space Successsive Quadratic Pro-
gramming (rSQP). This section does not provide a detailed benchmarking with the purpose
of selecting the best QP solver. Rather our intention is to demonstrate the efficiency and
flexibility of the dual, Schur Complement algorithm coupled with an object oriented imple-
mentation. To address this point we consider QP classes derived from banded as well as rSQP
structures. For the numerical study we consider two other QP solvers, QPOPT (Gill et al.,
1995) and QPKWIK (Schmid and Biegler, 1994) as well as a number of options and spe-
cializations for QPSchur. Other structures, such as sparse Hessians and constraint gradients

@ Springer

24 Optim Eng (2006) 7: 5-32

exploited in LOQO (Vanderbei, 1994) and SOCS (Betts and Frank, 1994), could also be
considered but direct sparse matrix solvers have not yet been incorporated within QPSchur
and remain a topic for future study.

Our numerical results are divided into three categories:

e Solution of large QPs drawn from a specialized banded Model Predictive Control appli-
cation. In this comparison we demonstrate the flexibility of QPSchur in adapting to the
specialized structure of a large QP problem.

e Solution of QP subproblems within an rSQP algorithm, applied to a scaleable nonlinear
program. In this comparison we compare different approaches that incorporate reduced
Hessian information. This is particularly easy with the object-oriented implementation of
QPSchur.

e Solution of QP subproblems within an rSQP algorithm (Schmid and Biegler, 1994) applied
to a set of test problems drawn from the CUTE collection. Here we also examine the iterative
refinement option in QPSchur to enhance its reliability.

6.1. Model Predictive Control

We first consider a structured quadratic program described in Bartlett et al. (2002); this is
a large model predictive control problem (MPC) for cross-directional control of a paper
machine. Here a quadratic objective function is used to drive the output variables to their
setpoints and also regularize the input variable profiles. For the purpose of this study we
consider an input horizon of one with a range of n, =150 to 1200 input variables. Because
of the large size, the speed and robustness of the QP solver is critical in this application. As
detailed in Bartlett et al. (2002), the QP is expressed only in terms of the input variables; it
contains only one equality constraint, n, general process-specific inequality constrains and
bounds on all n,, input variables. Because of the special structure of the paper machine model,
the Hessian G is a symmetric positive definite banded matrix (bandwidth = 15), which can be
formed and factored offline using standard banded LAPACK subroutines. The A, matrix in
(2) is also banded, with a bandwidth of two. The banded structure of A, is fully exploited by
the Schur complement method implemented in QPSchur through banded BLAS subroutines.

Table 2 MPC QP sizes and solution statistics for cold starts where: ‘n,,” = number of manipulated
variables, ‘obj’ = objective function value, ‘#bs’ = number of active variable bounds at the solution,
‘#in” = number of active general inequality constraints at the solution. Note that different numbers of
active constraints for case2 where reported for each QP solver which was due to ill conditioning and
degeneracy at the solution

QPOPT QPKWIK QPSchur
ny obj #bs #in obj #bs #in obj #bs #in
casela 150 —959.394 0 1 —959.394 1 —959.394 0 1
caselb 300 —2178.39 0 1 —2178.39 1 —2178.39 0 1
caselc 600 —3603.92 0 1 —3603.92 1 —3603.92 0 1
caseld 1200 —7211.06 0 1 —7211.06 1 —7211.06 0 1

case2 600 —34082.7 438 141 —34082.7 43
case3 600 —1617.47 0 0 —1617.47
case4 600 —1616.95 0 3 —1616.95

148 —34082.7 453 126
0 —1617.47 0 0
3 —1616.95 0 3

S © = O O O O

@ Springer

Optim Eng (2006) 7: 5-32 25

Table 3 MPC QP solution iteration counts and CPU times for cold starts on a Linux
800 MHz Intel PIIT with g4++/g77 where : ‘iter’ = number of QP iterations, ‘D/D’ =
CPU time (sec) using a dense Hessian and dense Jacobian, ‘B/D’ = CPU time (sec)
using a banded Hessian and dense Jacobian, and ‘B/B’ = CPU time (sec) using a
banded Hessian and banded Jacobian

QPOPT QPKWIK QPSchur

iter D/D B/D iter D/D iter D/D B/D B/B

casela 2 0.23 0.15 2 0.13 2 0.12 0.11 0.11
caselb 2 1.46 0.94 2 0.41 2 0.29 024 0.22
caselc 2 1057 6.67 2 1.92 2 0.94 054 044
caseld 2 76.67 4343 2 1249 2 5.16 1.21 0.92

case2 951 4144 31.03 1104 4439 900 3228 1487 891
case3 1 1043 6.56 1 1.85 1 0.86 048 044
case4 22 11.34 7.43 4 2.04 4 1.04 0.58 045

Table 4 MPC QP solution iteration counts and CPU times for warm starts on a
Linux 800 MHz Intel PIII with g++/g77 where : ‘iter’ = number of QP iterations,
‘D/D’ = CPU time (sec) using a dense Hessian and dense Jacobian, ‘B/D’ = CPU
time (sec) using a banded Hessian and dense Jacobian, and ‘B/B’ = CPU time (sec)
using a banded Hessian and banded Jacobian

QPOPT QPKWIK QPSchur

iter D/D B/D iter D/D iter D/D B/D B/B

casela 0 0.24 0.15 2 0.14 0 0.13 0.12 0.12
caselb 0 1.46 0.93 2 044 O 032 025 023
caselc 0 10.49 6.94 2 215 0 094 0.68 047
caseld 0 76.71 45.05 2 13.07 0 526 1.37 0.98
case2 45 1.78 128 1036 3191 O 489 758 1.15
case3 1 6.36 2.2 0 204 0 093 052 048
case4 1 10.7 6.68 4 214 0 094 006 046

Seven scenarios with different QP vectors were generated in Bartlett et al. (2002) and
these are considered in Tables 2 to 4 when comparing the three active-set QP solvers: QP-
Schur, QPKWIK and QPOPT. QPOPT can only exploit the banded Hessian G and not the
banded Jacobian A.. QPKWIK (the Goldfarb and Idnani implementation) cannot exploit any
structure in G or A.. On the other hand, QPSchur fully exploits the banded structure of G and
A, (i.e. by calling specialized BLAS and LAPACK routines for banded matrices). Table 2
provides the problem and solution statistics for the seven scenarios and indicates that all of
the methods solved the problems successfully. Table 3 gives the iteration counts and solution
times for the three QP solvers using cold starts. Here we see that the fully banded version of
QPSchur(B/B) has the best results. In fact, for cases with few active constraints (i.e. casela -
caseld, case3, case4) this implementation fully exploits the structure and properties of the
QP. Also note that the cost for QPSchur(B/B) increases only linearly with n,, from casela to
caseld, as a result of linear algebra done with banded matrices. Table 4 gives the iteration
counts for warm starts which were produced, given the solutions from the cold start runs.
With few active inequality constraints in casel, case3 and case4, there is little difference

@ Springer

26 Optim Eng (2006) 7: 5-32

between Tables 3 and 4 between the runtimes for QPOPT, QPKWIK and QPSchur. However,
for case?2 (i.e. where there are many active inequalities) the reductions in runtime for QPOPT
and QPSchur using warm starts are significant.

These results show the significance of exploiting the problem structure and utilizing warm
start information. They show that by using QPSchur(B/B) (i.e. with specialized banded matrix
objects) all of the test QPs were solved much faster than with the other solvers.

6.2. Scaleable problem for rSQP

In Successive Quadratic Programming (SQP) methods, the solution to a general Nonlinear
Program (NLP) is sought by solving a sequence of QPs. A particular class of SQP methods
(referred to as rSQP methods) seeks to solve the QP subproblems using projections into the
linearized equality constraints. For a nonlinear program with n variables and m equality con-
straints, these projections allow the Hessian of the Lagrangian to be represented in a reduced
space of dimension n — m. Moreover, in many applications, this matrix is approximated
using quasi-Newton methods (e.g. BFGS (Nocedal and Wright, 1999)). As described in
Schmid and Biegler (1994) the reduced space QP subproblem takes the form

min g7 p* + h(p9)' Bp* + (/2 + M (46)

E
st. by < |:I :|p"‘+bn < by (47)

where B € R —mxm=m) jq spd,g e R"™ M € R, E € R™*@=m and b, by €
R". Both B and E are usually dense matrices but may also have very specialized structure
and/or properties Also, the variable 7 is added to allow a relaxation of the inequality con-
straints, as p* = 0 and n = 1 is a feasible point if bl < b < bY. The relaxation variable n
is penalized in the objective function using a large constant M. Since we expect that the QP
will be feasible, the relaxation variable n = 0 is initially fixed and left out of the initial KKT
system, K,, in QPSchur.

Here the quasi-Newton approximation for B is provided through a s.p.d. BFGS approx-
imation (Nocedal and Wright, 1999). When n — m is small, dense matrix approximations
are inexpensive and lead to good performance. However, dense approximations can be pro-
hibitively expensive as n — m becomes large. We therefore consider the following options
with our object-oriented implementation of QPSchur used within an rSQP algorithm (Bartlett,
2001):

¢ BFGS: Using the BFGS formula, we directly update and store the Cholesky factors of
K, = B = LLT. Updating the Cholesky factor and solving the linear system (i.e. solves
with K,) both require O((n — m)?) flops.

LBFGS: We apply a limited memory approximation for K, = B where the £ most recent
BFGS updates are used (Byrd et al., 1994). Normally ¢ <« (n — m). LBFGS updates and
linear systems solves require only O((n — m){) flops. However, using the LBFGS matrix
only gives linear convergence while the dense BFGS gives superlinear convergence in the
rSQP algorithm.

PBFGS, PLBFGS: As discussed in Bartlett (2001), one can also approximate only a
subset of B using the BFGS method by noting which variables remain at their bounds
and contribute no new update information. Using the permutation matrix Q = [Q® Q]
we select the initially free and fixed reduced QP variables and update only the ‘free’

@ Springer

Optim Eng (2006) 7: 5-32 27

-
7 QPKWIK

CPU (sec)

---- --- A

L Il |
T t 1

0 500 1000 1500 2000 2500 3000
n

Fig. 1 CPU times for QP solvers (warm starts, dense BFGS) and overall rSQP iteration time for NLP
(48)—(50) with nact = 50 active variable bounds (n — m = n/2)

reduced Hessian K, = B = (QF)T B(QF) using either the BFGS or LBFGS options.
For each solve with K, we require only O((n — m — n*X)?) flops with PBFGS and only
O((n — m — n*)¢) flops with PLBFGS.

To compare the linear algebra costs for the reduced Hessian B options and the choice of the
initial KKT system K, in QPSchur, we consider the simple scaleable test problem

min l/z)ch 48)
S.t. cj =)Cj(JC(j+n/2) — 1) — IOX(j+n/2) = 0, fOI'j =1.. l’l/2 (49)
x; >0.01, fori=1...nact. (50)

The dimension of the reduced space for this NLP is (n — m) = n/2 and the number of active
inequality constraints at the solution can be scaled from nact = 0 up to nact < (n — m).

In the first set of numerical tests shown in Figure 1, we compare the efficiency of QPSchur,
QPOPT and QPKWIK using a dense BFGS matrix B. For QPSchur, the Cholesky factor
B = LLT was directly updated by the rSQP algorithm. For QPKWIK, the inverse Cholesky
factor B~' = L~T L~! is updated and for QPOPT, the upper triangular part of B is updated.
Figure 1 shows the CPU times per rSQP iteration using dense BFGS with nact = 50, a warm
start for the working set and increasing n for the NLP. Here QPOPT has a complexity of
O((n — m — nact)®) which explains the rapid increase in runtime for larger QPs with few
active inequality constraints. With a dense BFGS Hessian both QPKWIK and QPSchur are
O((n — m)*nact) but, due to an efficient implementation of the Schur complement and the
warm-start algorithm described in Section 5.2, QPSchur requires only ! /4 times the flops of
QPKWIK.

Figure 2 compares QPOPT and QPSchur using both the dense BFGS approximation and
the LBFGS (with £ = 2) options. Here QPOPT also uses a compact LBFGS representation
for B (as opposed to B~! used with QPSchur); this is also O((n — m)p). As shown in the
figure, the LBFGS B matrix made little difference with QPOPT since O((n — m — nact)?)
internal Cholesky factorizations dominate its runtime. However, the impact of using LBFGS
with QPSchur is dramatic; LBFGS drops the runtime complexity per rSQP iteration from
O((n — m)*nact) to O((n — m) £ (nact)).

Finally, for large nact even the O((n — m) £ (nact)) flops performed by QPSchur with
LBFGS dominate the cost of the rSQP algorithm and this requires the projected BFGS

@ Springer

28 Optim Eng (2006) 7: 5-32

10 +
B = B
_ QPOPT(BFGS)
3 QPOPT(LBFGS(2))
[
2
3] QPSchur(BFGS) 4
--------------- QPSchur(LBFGS(2))
0 500 1000 1500 2000 2500 3000

Fig. 2 CPU times for QP solvers (warm starts, LBFGS(2)) and overall rSQP iteration time for NLP in
(48)—(50), nact = 50 active variable bounds (n —m = n/2)

T=
6y
5 -+
~:-; 34 e — e ¥r—r— e X
& 2 - = - LBFGS
------ LPBFGS/IBFGS
17 EPBFGSABFGS; @ W R ssemesm s gmEt e ml oo i
ol /- Neeeeeeee.o..c.eiecoecoeco.oo.ilio
- } ! : i
1 2 3, 4 5
rSQP iteration -
0.3+
0_2 !
01+
0 } |
3 4 5

Fig. 3 CPU times for rSQP iterations using QPSchur with LBFGS and LPBFGS for NLP (48)—(50) with
n = 2000 (n —m = n/2) and nact = 500 active variable bounds. Enlargement of plot for rSQP iterations 3,

4 and 5 is also shown

approximation, BRR. Figure 3 shows the overall CPU runtimes per rSQP iteration using
LBFGS for the first two iterations and then switching to projected BFGS updating for the last
three iterations. The dramatic reduction in runtime for the projected BFGS updating (PBFGS
and PLBFGS) over LBFGS is due to the fact that K, = BRR is used and therefore, the Schur
complement remains empty in this scenario. However, n® = 500 is still quite large and the
enlargement in Figure 3 also shows a savings in using PLBFGS over PBFGS.

These results demonstrate the flexibility of QPSchur. Simply by replacing the matrix
object that represents the initial KKT matrix K,, it is possible to dramatically improve the
efficiency of the QP solver. For specialized classes of QPs that arise in MPC and rSQP, the
Schur complement QP solver very effectively exploits the structure of the problem at hand.

@ Springer

Optim Eng (2006) 7: 5-32 29

Table 5 Results for using QPKWIK,
QPOPT and QPSchur to solve the set of
test NLPs (max_iter = 100). There were
2% = 16 (four options varied) runs per NLP
with each QP solver: ‘solved” = number
of rSQP runs using the QP solver that con-
verged, ‘max_iter’ = number of rSQP runs
that did not converge before the maximum
iteration count of 100, ‘except’ = number
of rSQP runs where an unrecoverable error
occurred.

QP Solver solved max.iter except

QPKWIK 574 136 10
QPOPT 589 131
QPSchur 602 118 0

6.3. rSQP comparison with CUTE test problems

Finally, we consider QPSchur within an rSQP algorithm on 45 NLPs drawn from the Hock-
Schittkowski/CUTE test set and compare it with QPOPT and QPKWIK. These 45 test
problems were selected because each has at least one general constraint and at least one
active inequality constraint at the solution; HS11-HS14, HS16-HS24, HS29-HS37, HS41,
HS42,HS43-HS44, HS59, HS64, HS66, HS70-HS76, HS83, HS86, HS 100, HS 105, HS107—
HS109,HS114, HS118, HS119 (see Bartlett (2001)). Using all possible combinations of four
different rSQP options (2* = 16 combinations), a total of 45(16) = 720 NLP runs were gen-
erated with up to 100 QP subproblems solved per rSQP run (max_iter = 100). Therefore,
these tests represent the solution of thousands of QP subproblems and demonstrate the relia-
bility of QPSchur. Table 5 compares QPKWIK, QPOPT and QPSchur for these test NLPs. In
exact arithmetic all of these solvers should produce the same rSQP iterations and should differ
only in runtimes. However, with ill-conditioned NLPs solved using floating point arithmetic,
the number of rSQP iterations can vary significantly based on the choice of QP solver and
internal tolerances. It should be noted that several devices were in place for the rSQP algo-
rithm to minimize the number of algorithm failures. For example, the rSQP algorithm was
reinitialized in many cases when the QP solver failed. Therefore, several of the runs where
max_iter = 100 was exceeded were actually repeated failures with subsequent algorithm
reinitializations. The results in Table 5 indicate that QPSchur is fairly stable, as it solved
more NLPs than QPKWIK or QPOPT. It is possible that better results may be obtained for
QPKWIK and QPOPT with some tolerance adjustment. Also, by increasing max_iter to
1000, additional NLP runs converged, but more failures were reported as well.

Finally, these test NLPs present an opportunity to study the importance of iterative refine-
ment in QPSchur. Table 6 shows results for QPSchur using two different rSQP safeguard
options (see Bartlett (2001)). In the context of this paper, what is important about these
safeguard options is that when turned on, these safeguards reduce the number of ill con-
ditioned QP subproblems presented to QPSchur. When the basis repartitioning (BC) and
Hessian reinitialization (RH) safeguards are enabled in rSQP, disabling iterative refinement
within QPSchur has little impact; 602 NLPs are solved for (IR,BC,RH) instead of 601 for
(nIR,BC,RH). However, when these safeguards are turned off, the number of NLP failures
increases dramatically. The difference between using iterative refinement or not is most sig-
nificant when both safeguards are disabled (i.e. compare (IR, nBC, nRH) with (nIR, nBC,

@ Springer

30 Optim Eng (2006) 7: 5-32

Table 6 Results for using QPSchur to solve
the set of test NLPs (max_iter = 100). There
were 2* = 16 (four options varied) runs per
NLP attempted: ‘solved” = number of rSQP
runs that converged, ‘max_iter’ = number of
rSQP runs that did not converge before the max-
imum iteration count of 100, ‘except’ = num-
ber of rSQP runs where an unrecoverable er-
ror occurred. ‘IR’ = Iterative refinement with
QPSchur was allowed, ‘nIR’ = Iterative refine-
ment with QPSchur was not allowed, ‘BC’ =
Test for basis ill conditioning and repartitioning
enabled, ‘nBC’ = Test for basis ill condition-
ing and repartitioning disabled, ‘RH’ = Reini-
tialization of Hessian on QP failure, ‘nRH’ =
Algorithm exception on QP failure.

solved max.iter except

IR,BC,RH 602 118 0
nIR,BC,RH 601 117 2
IR,nBC,RH 587 122 11
IR,BC,nRH 591 109 20
IR,nBC,nRH 573 110 37
nIR,nBC,nRH 555 74 91

nRH)). Without these safeguards, QPSchur is asked to solve more poorly conditioned QP
subproblems and reports more failures. In particular, comparing the cases (IR,nBC,nRH) and
(nIR,nBC,nRH) shows that QPSchur can solve more QPs with iterative refinement, although
it is not always successful. When iterative refinement is used, the number of rSQP algorithm
exceptions drops from 91 to 37.

7. Conclusions and future work

We develop a dual-feasible active-set strategy for solving quadratic problems. Addition and
dropping of constraints is provided through a Schur complement updating strategy. A detailed
overview is provided and several challenging applications are presented that demonstrate the

performance of this approach. We also mention that this method is readily extended to exploit

equality constraints of the form A,x = b. Here we simply define K, = [f /?;] and proceed

as above. A complete implementation of this approach is described in Bartlett (2001).

Considerable planning and experimentation have gone into developing the QPSchur for-
mulation, algorithm and its object-oriented software implementation. Not only can QPSchur
be used to exploit the properties of many types of specialized QPs efficiently, but these QPs
can be solved using the same core QPSchur implementation. In contrast, a QP solver de-
veloped for a specialized application area must deal with all of the detailed implementation
pitfalls from scratch.

However, there is still more to be done with QPSchur that would increase its efficiency and
robustness in the following areas: (i) implementation of factorizaton updating strategies for
symmetric indefinite Schur complements, (ii) generalized selection strategies to add violated

@ Springer

Optim Eng (2006) 7: 5-32 31

constraints and (iii) the incorporation of abstract vectors for parallel and other specialized
applications and computing environments.

(i) As was previously mentioned, the efficiency of this QP algorithm relies strongly on
the implementation of the Schur complement (i.e. updating and downdating). When the
Schur complement is positive or negative definite the current Cholesky implementation
is very efficient. However, when the Schur complement is very large and indefinite,
the current Bunch-Kaufman implementation, which refactors S from scratch for each
change, becomes significantly less efficient. QPSchur would greatly benefit from a
cheaper but more complex implementation of updating an indefinite symmetric matrix
(i.e. along the lines of Sorensen (1977)).

(i1) The current implementation of the constraints class uses only a few simple strategies for
selecting violated constraints for the dual QP algorithm. When there are relatively few
constraints or when the constraints are sparse then it is comparatively cheap to compute
the residual of all the constraints when looking for violated constraints. However, other
QP applications may have many more general inequality constraints than variables and
these constraints may be fairly dense (e.g. rSQP where (n — m) < m). In these cases,
evaluating every constraint to look for a violated constraint would dominate the runtime
to solve the QP. A more sophisticated constraint selection strategy would keep a list
of likely violated constraints that would be checked at each iteration. Such a strategy
would try to reach a balance between reducing the number of constraint evaluations per
QP iteration while trying not to pick constraints with small violations that are likely to
be freed later on.

(iii) Up to this point, the implementation of QPSchur has focused on trying to abstract
matrices such as G, A and K, away from the core algorithmic code so that the structure
and special properties of these matrices and the QP application area can be exploited.
In particular, we intend to provide capabilities for direct sparse and iterative linear
solvers. As long as the executables operate in a strictly shared-memory environment then
every piece of data is stored in local memory and this implementation is satisfactory.
However, with more sophisticated computing environments such as distributed-memory
multi-processor machines that use using parallel algorithms, QPSchur must be modified
to reach its full potential in these special environments. Here serial representations of
vectors in QPSchur must be replaced with abstract vector interfaces, as this would
allow for efficient implementations when used in these parallel and other specialized
environments, as well as in simple shared-memory situations (Bartlett et al., 2003). Work
in this area is currently underway.

References

Bartlett, RA (2001) Object oriented approaches to large-scale nonlinear programming for process systems
engineering. PhD thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
PA

Bartlett RA, Biegler LT, Backstrom J, Gopal V (2002) Quadratic programming algorithms for large-scale
model predictive control. J. Process Control 82:775

Bartlett RA, Biegler LT (2003) RSQP++: An object-oriented framework for successive quadratic pro-
gramming. In Large-scale PDE-Constrained Optimization, Lecture Notes in Computational Science and
Engineering 30, Berlin, Springer Verlag, pp 316

Betts JT, Frank PD (1994) A sparse nonlinear optimization algorithm. J. Opt. Theory Appl. 82(3):519-541

Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-Newton matrices and their use in limited
methods. Math. Prog. 63:129-156

Carlson D (1986) What are Schur complements, anyway? Lin. Alg. Appl. 74:257-275

@ Springer

32 Optim Eng (2006) 7: 5-32

Fletcher R (1981) Practical methods of optimization. John Wiley & Sons

Gill P, Murray W, Saunders M (1995) User’s Guide for QPOPT 1.0: A Fortran Package for Quadratic Pro-
gramming. Systems Optimization Laboratory, Department of Operations Research, Stanford University

Gill PE, Murray W, Saunders MA, Wright MH (1990) A Schur complement method for sparse quadratic
programming. In Reliable Numerical Computation, Oxford University Press, pp 113—138

Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs.
Mathematical Programming 27:1-33

Golub GH, Van Loan CF (1996) Matrix computations, third edition. Johns Hopkins University Press

Nash S, Sofer A (1996) Linear and nonlinear programming. McGraw Hill

Nocedal J, Wright S (1999) Numerical optimization. Springer, New York

Powell M (1983) ZQPCVX: A Fortran subroutine for convex quadratic programming. Technical report, De-
partment of Applied Mathematics and Theoretical Physics, Cambridge University

Schmid C, Biegler LT (1994) Quadratic programming methods for reduced hessian SQP. Comp. Chem. Eng.
18:817

Sorensen DC (1977) Updating the Symmetric Indefinite Factorization with Applications in a Modified Newton
Method. Technical Report ANL-77-49, Argonne National Laboratory

Vanderbei RJ (1994) An Interior Point code for Quadratic Programming. Technical Report SOR 94-15,
Princeton University

@ Springer

